Fertilizante utilizado para frutas cítricas

Tenho um pe de limao que venho cultivando ha 2 anos num vaso. Preciso transpanta-lo do vaso  menor para um vaso maior ou para a terra. Estava procurando fertilizantes para frutas citricas para utilizar na terra onde o pe de limao sera transplantado. Encontrei no site do Home Depot um tal de Jobe’s  Organic 4 lb. Granular Fruit and Citrus Fertilizer que custa 7.99 (data da pesquisa 9 de Abril de 2017)

Ai entao fui pesquisar o conteudo e observei que utiliza uma combincao de microorganismos chamado de Biozome. Veja aqui a descricao do produto:

Jobe’s Organics Granular Fertilizer for Fruit and Citrus (3-5-5) gives gardeners a fuss-free environmentally friendly option for healthy and beautiful plants. The first fast-acting organic fertilizer for results you can really see. Jobe’s Organics Granular Fertilizers with Jobe’s Biozome is a new and unique family of 100% organic fertilizer formulas. The secret is in Jobe’s Biozome, a consortium of three microorganisms-bacteria, mycorrhizal fungi plus a unique species of Archaea-an extremely aggressive microorganism that quickly breaks down even complex materials and minerals into basic nutrients and trace elements that plants can readily absorb. With Jobe’s Organics you will see results faster.

source: http://www.homedepot.com/p/Jobe-s-Organic-4-lb-Granular-Fruit-and-Citrus-Fertilizer-09226/205750321?cm_mmc=SEM%7cTHD%7cG%7c0%7cG-Pro-Services&gclid=COeZs9uFmNMCFRY8gQodz7wNZA&gclsrc=aw.ds

Ao pesquisar o tal de Biozome, me deparei com o conceito de microorganismos Arachaea, um tipo de organismo que rapidamente decompoe materiais compostos e minerais de forma mais rapida fornecendo os elementos que as plantas possam absorver rapidamente. Fazendo uma pesquisa na Internet (obrigado Google!) me deparei com um site que discute o conceito de Biozome e me proporcionou um link para a Universidade de Berkeley na California one ha uma expicacao mais detalhada sobre o tema:

The Domain Archaea wasn’t recognized as a major domain of life until quite recently. Until the 20th century, most biologists considered all living things to be classifiable as either a plant or an animal. But in the 1950s and 1960s, most biologists came to the realization that this system failed to accomodate the fungi, protists, and bacteria. By the 1970s, a system of Five Kingdoms had come to be accepted as the model by which all living things could be classified. At a more fundamental level, a distinction was made between the prokaryoticbacteria and the four eukaryotic kingdoms (plants, animals, fungi, & protists). The distinction recognizes the common traits that eukaryotic organisms share, such as nuclei, cytoskeletons, and internal membranes.

The scientific community was understandably shocked in the late 1970s by the discovery of an entirely new group of organisms — the Archaea. Dr. Carl Woese and his colleagues at the University of Illinois were studying relationships among the prokaryotes using DNA sequences, and found that there were two distinctly different groups. Those “bacteria” that lived at high temperatures or produced methane clustered together as a group well away from the usual bacteria and the eukaryotes. Because of this vast difference in genetic makeup, Woese proposed that life be divided into three domains: Eukaryota, Eubacteria, and Archaebacteria. He later decided that the term Archaebacteria was a misnomer, and shortened it to Archaea. The three domains are shown in the illustration above at right, which illustrates also that each group is very different from the others.

Further work has revealed additional surprises, which you can read about on the other pages of this exhibit. It is true that most archaeans don’t look that different from bacteria under the microscope, and that the extreme conditions under which many species live has made them difficult to culture, so their unique place among living organisms long went unrecognized. However, biochemically and genetically, they are as different from bacteria as you are. Although many books and articles still refer to them as “Archaebacteria”, that term has been abandoned because they aren’t bacteria — they’re Archaea

Finding Archaea : The hot springs of Yellowstone National Park, USA, were among the first places Archaea were discovered. At left is Octopus Spring, and at right is Obsidian Pool. Each pool has slightly different mineral content, temperature, salinity, etc., so different pools may contain different communities of archaeans and other microbes. The biologists pictured above are immersing microscope slides in the boiling pool onto which some archaeans might be captured for study

Archaeans include inhabitants of some of the most extreme environments on the planet. Some live near rift vents in the deep sea at temperatures well over 100 degrees Centigrade. Others live in hot springs (such as the ones pictured above), or in extremely alkaline or acid waters. They have been found thriving inside the digestive tracts of cows, termites, and marine life where they produce methane. They live in the anoxic muds of marshes and at the bottom of the ocean, and even thrive in petroleum deposits deep underground.

Some archaeans can survive the dessicating effects of extremely saline waters. One salt-loving group of archaea includes Halobacterium, a well-studied archaean. The light-sensitive pigment bacteriorhodopsin gives Halobacterium its color and provides it with chemical energy. Bacteriorhodopsin has a lovely purple color and it pumps protons to the outside of the membrane. When these protons flow back, they are used in the synthesis of ATP, which is the energy source of the cell. This protein is chemically very similar to the light-detecting pigment rhodopsin, found in the vertebrate retina.

Archaeans may be the only organisms that can live in extreme habitats such as thermal vents or hypersaline water. They may be extremely abundant in environments that are hostile to all other life forms. However, archaeans are not restricted to extreme environments; new research is showing that archaeans are also quite abundant in the plankton of the open sea. Much is still to be learned about these microbes, but it is clear that the Archaea is a remarkably diverse and successful clade of organisms.

fonte: http://www.ucmp.berkeley.edu/archaea/archaea.html

O comentario que vale a pena ressaltar no site icmag.com  e do membro chamado Microbeman. Basicamente ele afirma que Archea esta em quases todos os lugares, voce nao precisa gastar dinheiro para compra-lo. Aqui vai sua resposta sobre o Archaea

I’m no expert on the Rev but he seems a Johnny come lately skating on other peoples’ coat tails kinda guy.

On Archaea, it is already everywhere in your soil, compost and compost tea. Someone who buys the Biozome harsh environment archaea is just being taken for a ride. [ they actually once claimed that Archaea were discovered by Dr. Carl Oppenheimer until I challenged them on that; Now I see they changed the wording] Read what I say about Archaea on my page and in my posts. Note I use the phrase bacteria/archaea fairly consistently.

http://www.ucmp.berkeley.edu/archaea/archaea.html

http://www.sciencedaily.com/releases…0817103131.htm

Stop wasting money on crap that magazine guys spew.

__________________
Anybody can be wrong about anything.

“When the facts change, I change my mind.
What do you do, sir?”
“Capitalism is the astounding belief that the most wickedest of men will do the most wickedest of things for the greatest good of everyone.”
~John Maynard Keynes~
Sorry: No questions by PM, check my webpage

 

Anúncios

Deixe uma Resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s


%d bloggers like this: